Trigonometrical Equations
normal

If $\sin \theta  + 2\sin \phi  + 3\sin \psi  = 0$ and $\cos \theta  + 2\cos \phi  + 3\cos \psi  = 0$ , then the value of $\cos 3\theta  + 8\cos 3\phi  + 27\cos 3\psi  = $ 

A

$\cos (3\theta  + 3\phi  + 3\psi )$

B

$18\cos (\theta  + \phi  + \psi )$

C

$6\cos (\theta  + \phi  + \psi )$

D

$36\cos (\theta  + \phi  + \psi )$

Solution

Let $a=\cos \theta+i \sin \theta, b=\cos \phi+i \sin \phi, c=\cos \psi+i \sin \psi$

$a+2 b+3 c=0+i .0$

$\mathrm{SO}$,

$a+2 b+3 c=0$

$a^{3}+8 b^{3}+27 c^{3}=3 \cdot(a \cdot 2 b \cdot 3 c)$

$=18 \mathrm{abc}$

$\mathrm{SO}$,

$\cos 3 \theta+8 . \cos 3 \phi+27 \cos \psi=18 \cos (\theta+\phi+\psi)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.